

ATR Crystal Choice for Fiber-based Process Spectroscopy

Dr Andrea Teuber, Alexander Novikov, Dr Tatiana Sakharova, Dr Viacheslav Artyushenko

Introduction

Attenuated Total Reflectance (ATR) fiber probes are used for research and industrial applications including real-time process monitoring in the chemical, petrochemical, nuclear, biopharmaceutical and food industries. Selection of the appropriate probe, including the ATR crystal, is critical for effective and reliable measurements. This Technical Note gives a short overview of the different ATR crystals available at art photonics.

Fiber based ATR spectroscopy

ATR spectroscopy is a widely used method for analyzing various types of liquid and pasty mixtures with minimal preparation. It works by directing an optical beam into a high refractive index ATR crystal, also known as an internal reflection element (IRE), where it is reflected off the internal surface. This reflection creates an evanescent wave that penetrates a small distance into the sample in contact with the crystal. The interaction of the evanescent wave with the sample results in the absorption of specific wavelengths, producing a spectrum that can be used for qualitative and quantitative analysis.

ATR fiber probes extend the versatility and applicability of ATR spectroscopy by enabling in-situ and remote analysis of various chemical reactions.

Spectral ranges

The ATR technique is most commonly used in mid-IR spectroscopy, where vibrational transitions provide high absorption coefficients for molecular functional groups. In highly absorbing mixtures, ATR can also be used in near-infrared (NIR) spectroscopy and for measuring the absorption of electronic transitions in the ultraviolet-visible (UV-VIS) region. However, NIR and UV-VIS are less sensitive than MIR.

ATR Crystal Choice

Several factors influence the choice of ATR crystals, including the spectral range and chemical compatibility of the crystal material (**Table 1**):

- 1. **Spectral Range** of ATR crystal materials must be considered based on the application requirements.
- 2. **Chemical Compatibility** between the crystal material and the sample is critical, especially in harsh environments.

Diamond is suitable for most samples and is known for its robustness and high chemical resistance in any medium. However, a wide absorption gap at 2300-1900 cm⁻¹ limits its use for some applications.

ZnSe has a wide working spectral and temperature range, but it is brittle and has a limited chemical compatibility. ZnSe dissolves in acidic and basic solutions and is not resistant to some complexing agents.

Germanium (Ge) is stable in non-oxidizing acids, but not In concentrated basic solutions and acids with oxidizing and complexing agents.

Silicon (Si) is hard and brittle and has a similar chemical compatibility to Ge.

Cubic Zirconia (ZrO₂, Zirconium oxide) and sapphire crystals can be used in NIR and MIR ranges while Sapphire is used in NIR and mostly in UV ATR probes. Both crystals are very hard and chemically stable except in concentrated alkalies.

Detachable Loops do not have a classical crystal shape and are presented in single, double or triple loops of fiber for enhanced sensitivity. They provide a costeffective solution and are disposable. They are made from AgCIBr polycrystalline fiber which interacts with acidic and basic solutions, S₂O₃ functional groups and other complexing groups. Loops are relatively fragile and can only be used for measurements in liquids.

Table 1 Overview of the available ATR Crystals for fiber probe spectroscopy at art photonics.

	Diamond	Zinc Selenide	Silicon	Germanium	Cubic Zirconia		Sapphire		Detachable Loops	
							5			
Scheme										
Reflections	2	2	2	2	3		3		Multiple	
Angle at Top	90°	90°	120°	120°	60°		60°		Not defined	
Angle of Incidence	45°	45°	30°	30°	60°		60°		Not defined	
Spectral range of ATR probe with the crystal	600-1900 cm ⁻¹	600-3100 cm ⁻¹	600-3100 cm ⁻¹	600-3100 cm ⁻¹	1550-9000 cm-1	400-2200 nm	400-2200 nm	180-1300 nm	6500-1550 cm-1	2500-600 cm-1
Fiber type in ATR probe with the crystal	PIR	PIR	PIR	PIR	CIR	Silica NIR	Silica NIR	Silica UV	CIR	PIR
Refractive index n _i of ATR crystal	2.4	2.4	3.5	4	2.1	2.1	1.7	1.8	2.1	2.1
Benefits of the crystal	Very hard, chemically inert	Uniform transmission over the entire mid-IR spectral range	Relatively hard, good chemical resistance	Uniform transmission over the entire mid-IR spectral range, good chemical resistance	Hard and chemically inert		Hard and chemically inert		Improved sensitivity by adding more turns; disposable tips	
Disadvantage of the crystal	Absorption bands in the range 2600-1900 cm-1	Soft and fragile, limited chemical resistance	Absorption bands in the spectral range below 1200 cm-1	Temperature sensitive; relatively soft	Limited transmission range		Limited transmission range		Soft and fragile, limited chemical resistance	
Chemical Resistance	Unlimited	pH 5-9	pH 0-10	pH 0-10	pH 0-12		pH 0-12		pH 5-9	
Limited Stability in	No limitations	Acids and alkalis, complexing agents	Strong alkalis, oxidizing and complexing agents	Strong alkalis, oxidizing and complexing agents	Strong alkalis		Strong alkalis		Acids & alkalis, complexing agents	

Conclusion

The choice of ATR crystal is important in fiber-based process spectroscopy, influencing the accuracy and reliability of spectroscopic measurements across different spectral ranges. By considering the spectral range and chemical compatibility of the crystal, users can optimize their ATR fiber probes for a wide range of applications.

For more detailed information, feel free to contact us:

via email: sales@artphotonics.com via call +49 (0) 30-6779 887-0 or come by in person.

References

- 1. Artyushenko, V., Bocharnikov, A., Sakharova, T. & Usenov, I. Mid-infrared Fiber Optics for 1–18 μm Range: IR-fbers and waveguides for laser power delivery and spectral sensing. Opt. Photonik 9, 35-39. https://doi.org/10.1002/opph.201400062 (2014).
- 2. M. N. Polyanskiy. Refractive index. info database of optical constants. Sci. Data 11, 94 (2024) **art** photonics

Find out more at artphotonics.com

©2024 art photonics GmbH. All rights reserved.

It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Please consult your local sales representatives for details.

MEMBER OF THE NYNOMIC GROUP